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the function of dioldehydratases. 
While the present study has involved organocobalt sub­

strates, the general features are expected to be characteristic 
of photohomolysis in most transition metal complexes. More 
specifically, we can anticipate that, in those systems for which 
4>R is a constant (significantly less than unity) over an appre­
ciable range of excitation energies greater than E^, there will 
be considerable excited-state thermalization and numerical 
values of </>R will be a function of both excited-state dynamics 
and radical pair recombination statistics. 
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Flow Tube Measurement of the Rate Constants of the 
N(2D, 2P, and 4S) + Cl2 Reactions 

Sir: 

Love et al.1 have recently published the first results of their 
crossed molecular beam experiments of atomic nitrogen plus 
halogen reactions. Their arc-heated (7000-15 000 K) nozzle 
beam source produces a mixture OfN(4S, 2D, and 2P) species, 
which complicates the analysis of their reactive scattering 
data. 

We present here the results of a brief kinetic study, at 298 
K, of the N(2D) + Cl2, N(2P) + Cl2, and ground-state N(4S) 
+ Cl2 reactions using the discharge-flow, resonance fluores­
cence method. The metastables are found to react very rapidly 
with Cl2, i.e., kiD = 3.6 X 10-" and kiP = 2.2 XlO- ' 1 cm3 

s_1. Their high detectability (STO9 cm-3) and low initial 
concentration (MO11"12 cm-3) permits the unambiguous 
measurement of elementary rate constants. The reaction of 
ground-state N atoms is about four orders of magnitude slower, 
b s ~ 2 X 1O-'5 cm3 s_ l , and, although this value is in quali­
tative agreement with two published results,23 it lies near the 
lower limit of the measurable range accessible to this 
method. 

The flow tube apparatus is a modification of an earlier one,4 

the principal difference being the use of resonance fluorescence 
rather than absorption which increases detection sensitivity 
by a factor of 10. This makes it possible to measure the kinetics 
of N(2P) whose initial concentration is smaller than that of 
N(2D) by about a factor of 6. A microwave discharge in 
flowing He + 1% N2, which emits the strong multiplets at 
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149.2 (2D) and 174.2 nm (2P), serves as the resonance lamp. 
Since both transitions have a common upper state, one or the 
other multiplet must be isolated in a given experiment; i.e., for 
N(2P) detection, a Suprasil-2 quartz window passes 174.2- but 
blocks 149.2-nm radiation, and for N(2D) a band rejection 
filter (Acton Research Corp.) passes only 149.2-nm radiation. 
Since the fluorescence is emitted at both multiplets, the signal 
is monitored at a wavelength other than that used to excite the 
fluorescence with a resultant improvement in scattered light 
suppression. A 0.5-m vacuum monochromator (Jarrell-Ash, 
Model 84-110) and solar blind photomultiplier (EMR, Model 
541-GX) are used to measure the resonance absorption or 
fluorescence signals at the downstream end of the 2.5-cm i.d. 
flow tube. Absorption of radiation by C^ at 149.2 and 174.2 
nm was found to be negligible over the range of concentrations 
used. 

Atomic species are produced in a microwave discharge 26 
cm upstream of the fluorescence cell in flowing Ar (~3 Torr) 
containing ~ 1 % N2. CI2 (<1% in Ar) is added 14 cm upstream 
of the cell through a multiperforated, fast-mixing glass loop. 
Typical CI2 concentrations range from 8 to 80 X 1012 cm -3 for 
the fast metastable reactions and from 1 to 25 X 1014 for the 
slow N(4S) reaction. Reaction times are 4.5 ms for the meta­
stable and 50 ms for the ground-state reaction. Earlier ex­
periments in which the discharge atom source was moved had 
shown that metastables are efficiently removed by surface 
deactivation whereas N(4S) persists with negligible loss. For 
the metastable reactions it is important to know whether 
laminar flow is established in the reaction region,5 since fully 
laminar flow introduces a factor of 1.6 by which the "plug-
flow" rate constant must be multiplied for species whose 
concentration near the surface is zero. Our flow conditions are 
intermediate between plug- and laminar flow for M = Ar, 
whereas for M = He they are calculated to be purely laminar.5 

This was confirmed by studies of N(2D and 2P) with O2 which 
gave consistent k's when factors of 1.3 and 1.6 were used for 
M = Ar and He, respectively. The metastable + CI2 rate 
constants reported here use the factor 1.3, but, since its total 
range is 1.0 to 1.6, a maximum error of 30% may be in­
curred. 

Accurately linear plots of In If vs. [Cb] (IF - resonance 
fluorescence signal) for six series of experiments, each con­
sisting of five to six different CI2 additions, gave /c2D = (3.60 
± 0.4) X 10~'' cm3 s_1, where the /c's are the slopes multiplied 
by 1.3 and divided by the average reaction time, /. The indi­
vidual experiments gave rate constants of 3.53,4.19, 3.17, 3.68, 
3.42, and 3.36 X 10 _ u cm3 s~' with correlation coefficients 
of 0.970 to 0.998 for the least-squares fits of the linear In If vs. 
[Cb] plots. Similar experiments for N(2P) gave kip = 2.16 ± 
0.2 X 10"'' cm3 s-' from individual values of 2.08, 2.12, 2.39, 
and 2.05 X 10-11 cm3 s_1 with correlation coefficients of 0.990 
to 0.998. 

For the very much slower N(4S) reaction, [N(4S)] was 
monitored by the intensity of the (11, 7) band of the first pos­
itive system (B3II — A32u

+) of N2 whose intensity is known 
to be proportional to [N]2 under these conditions.6 It was also 
assumed that the reaction product, NCl, reacts rapidly with 
excess N(4S) so that /c4S is given by 1 /At times the slope of the 
semilog plot of intensity vs. [CI2]. Because of the low flow ve­
locity in these experiments, the N-metastable concentrations 
will have decayed to negligibly small values before CI2 is added 
to the flow. Three N(4S) experiments gave k43 = 2 X 10-15 

cm3 s_ ' . This is likely to be an upper limit, since our brief in­
vestigation did not fully eliminate small changes in the surface 
properties of the flow tube that may contribute to the slow 
observed decay. 

It has been shown7 that a small amount OfN(2P) is produced 
from N(4S) in the nitrogen afterglow, presumably by reaction 
OfN(4S) with N2(A3Su+). The corresponding [N(2P)] should 

therefore be proportional to [N(4S)]2, and relatively constant 
as a consequence of the slow decay of N(4S). This steady-state 
[N(2P)] is much smaller than that formed in the discharge 
source as evidenced by the measured linear semilog decay of 
[N(2P)], without showing any leveling off, when the discharge 
source was moved along the flow tube. 

Whether the observed removal OfN(2D or 2P) by Cl2 is due 
to quenching or chemical reaction is now also being investi­
gated by monitoring the Cl-atom concentration in its 2P3/2 and 
2Pi/2 states by resonance absorption at 134.7 and 136.3 nm.8 

Early results indicate extensive reaction, i.e., a sharp rise of the 
Cl-absorption signal leveling off at a constant value as more 
CI2 is added. The Cl-atom yield, the 2Pi/2 to 2P3/2 concen­
tration ratio, and the contribution of the NCl + N(4S) -*• N2 
+ Cl reaction are still under investigation. 

Potentially interfering reactions of N(2D, 2P) are easily 
shown to be much too slow to perturb the observed N-meta­
stable decays. The present experiments thus provide species-
selective, elementary reaction rate constants at 298 K, and they 
are easily extendable to higher and lower temperatures. They 
show the considerable power of the flow tube technique in the 
study of bimolecular reactions. 
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A Versatile Three-Carbon Annelation. Synthesis of 
Cyclopentanones and Cyclopentanone Derivatives from 
Olefins1 

Sir: 

Four-carbon annelation reactions have been extensively 
studied and are of general importance in the construction of 
complex organic molecules.2 In contrast, there are few gen­
erally useful three-carbon annelation processes,2-3 in spite of 
the widespread presence of the cyclopentane ring in many 
classes of natural products. In this communication, we present 
a simple, yet versatile, synthesis from olefins of cyclopenta­
nones and various cyclopentanone derivatives, which we believe 
will offer an attractive alternative to existing three-carbon 
annelation methods. 

The procedure (eq 1), formally a [3 + 2] cycloaddition, is 

I c l ^ - . - 0 N fP CH 2 N 2 R _ -

R' R ' R ^ 7 * » Cl 
Ci c l 
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